(0) Obligation:

Clauses:

even(s(s(X))) :- even(X).
even(0).
lte(s(X), s(Y)) :- lte(X, Y).
lte(0, Y).
goal :- ','(lte(X, s(s(s(s(0))))), even(X)).

Query: goal()

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph DT10.

(2) Obligation:

Triples:

evenA(s(s(X1))) :- evenA(X1).
goalC :- ','(ltecB(s(X1)), evenA(X1)).

Clauses:

evencA(s(s(X1))) :- evencA(X1).
evencA(0).
ltecB(s(s(s(0)))).
ltecB(s(s(0))).
ltecB(s(0)).
ltecB(0).

Afs:

goalC  =  goalC

(3) TriplesToPiDPProof (SOUND transformation)

We use the technique of [DT09]. With regard to the inferred argument filtering the predicates were used in the following modes:
evenA_in: (b)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

GOALC_IN_U2_1(ltecB_in_a(s(X1)))
U2_1(ltecB_out_a(s(X1))) → U3_1(evenA_in_g(X1))
U2_1(ltecB_out_a(s(X1))) → EVENA_IN_G(X1)
EVENA_IN_G(s(s(X1))) → U1_G(X1, evenA_in_g(X1))
EVENA_IN_G(s(s(X1))) → EVENA_IN_G(X1)

The TRS R consists of the following rules:

ltecB_in_a(s(s(s(0)))) → ltecB_out_a(s(s(s(0))))
ltecB_in_a(s(s(0))) → ltecB_out_a(s(s(0)))
ltecB_in_a(s(0)) → ltecB_out_a(s(0))
ltecB_in_a(0) → ltecB_out_a(0)

The argument filtering Pi contains the following mapping:
ltecB_in_a(x1)  =  ltecB_in_a
ltecB_out_a(x1)  =  ltecB_out_a(x1)
s(x1)  =  s(x1)
evenA_in_g(x1)  =  evenA_in_g(x1)
GOALC_IN_  =  GOALC_IN_
U2_1(x1)  =  U2_1(x1)
U3_1(x1)  =  U3_1(x1)
EVENA_IN_G(x1)  =  EVENA_IN_G(x1)
U1_G(x1, x2)  =  U1_G(x1, x2)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GOALC_IN_U2_1(ltecB_in_a(s(X1)))
U2_1(ltecB_out_a(s(X1))) → U3_1(evenA_in_g(X1))
U2_1(ltecB_out_a(s(X1))) → EVENA_IN_G(X1)
EVENA_IN_G(s(s(X1))) → U1_G(X1, evenA_in_g(X1))
EVENA_IN_G(s(s(X1))) → EVENA_IN_G(X1)

The TRS R consists of the following rules:

ltecB_in_a(s(s(s(0)))) → ltecB_out_a(s(s(s(0))))
ltecB_in_a(s(s(0))) → ltecB_out_a(s(s(0)))
ltecB_in_a(s(0)) → ltecB_out_a(s(0))
ltecB_in_a(0) → ltecB_out_a(0)

The argument filtering Pi contains the following mapping:
ltecB_in_a(x1)  =  ltecB_in_a
ltecB_out_a(x1)  =  ltecB_out_a(x1)
s(x1)  =  s(x1)
evenA_in_g(x1)  =  evenA_in_g(x1)
GOALC_IN_  =  GOALC_IN_
U2_1(x1)  =  U2_1(x1)
U3_1(x1)  =  U3_1(x1)
EVENA_IN_G(x1)  =  EVENA_IN_G(x1)
U1_G(x1, x2)  =  U1_G(x1, x2)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 4 less nodes.

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

EVENA_IN_G(s(s(X1))) → EVENA_IN_G(X1)

The TRS R consists of the following rules:

ltecB_in_a(s(s(s(0)))) → ltecB_out_a(s(s(s(0))))
ltecB_in_a(s(s(0))) → ltecB_out_a(s(s(0)))
ltecB_in_a(s(0)) → ltecB_out_a(s(0))
ltecB_in_a(0) → ltecB_out_a(0)

The argument filtering Pi contains the following mapping:
ltecB_in_a(x1)  =  ltecB_in_a
ltecB_out_a(x1)  =  ltecB_out_a(x1)
s(x1)  =  s(x1)
EVENA_IN_G(x1)  =  EVENA_IN_G(x1)

We have to consider all (P,R,Pi)-chains

(7) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

EVENA_IN_G(s(s(X1))) → EVENA_IN_G(X1)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(9) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EVENA_IN_G(s(s(X1))) → EVENA_IN_G(X1)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(11) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • EVENA_IN_G(s(s(X1))) → EVENA_IN_G(X1)
    The graph contains the following edges 1 > 1

(12) YES